首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   7篇
  国内免费   17篇
安全科学   14篇
废物处理   7篇
环保管理   82篇
综合类   61篇
基础理论   91篇
环境理论   1篇
污染及防治   82篇
评价与监测   18篇
社会与环境   8篇
灾害及防治   9篇
  2023年   7篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   14篇
  2016年   13篇
  2015年   8篇
  2014年   14篇
  2013年   28篇
  2012年   19篇
  2011年   26篇
  2010年   16篇
  2009年   21篇
  2008年   23篇
  2007年   12篇
  2006年   25篇
  2005年   10篇
  2004年   17篇
  2003年   11篇
  2002年   7篇
  2001年   11篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1968年   2篇
  1961年   3篇
  1959年   1篇
排序方式: 共有373条查询结果,搜索用时 203 毫秒
11.
Warner, Richard C., Carmen T. Agouridis, Page T. Vingralek, and Alex W. Fogle, 2010. Reclaimed Mineland Curve Number Response to Temporal Distribution of Rainfall. Journal of the American Water Resources Association (JAWRA) 46(4): 724-732. DOI: 10.1111/j.1752-1688.2010.00444.x Abstract: The curve number (CN) method is a common technique to estimate runoff volume, and it is widely used in coal mining operations such as those in the Appalachian region of Kentucky. However, very little CN data are available for watersheds disturbed by surface mining and then reclaimed using traditional techniques. Furthermore, as the CN method does not readily account for variations in infiltration rates due to varying rainfall distributions, the selection of a single CN value to encompass all temporal rainfall distributions could lead engineers to substantially under- or over-size water detention structures used in mining operations or other land uses such as development. Using rainfall and runoff data from a surface coal mine located in the Cumberland Plateau of eastern Kentucky, CNs were computed for conventionally reclaimed lands. The effects of temporal rainfall distributions on CNs was also examined by classifying storms as intense, steady, multi-interval intense, or multi-interval steady. Results indicate that CNs for such reclaimed lands ranged from 62 to 94 with a mean value of 85. Temporal rainfall distributions were also shown to significantly affect CN values with intense storms having significantly higher CNs than multi-interval storms. These results indicate that a period of recovery is present between rainfall bursts of a multi-interval storm that allows depressional storage and infiltration rates to rebound.  相似文献   
12.
Environmental agencies across the United States have searched for adequate methods to assess anthropogenic impacts on the environment. Biological assessments, which compare the taxonomic composition of an aquatic assemblage to relevant biocriteria, have surfaced as an effective method to assess the ecological integrity of US waterbodies. In this study, bioassessment data were collected and analyzed in conjunction with physical habitat and chemical stressor data for streams and rivers within the San Diego basin from 1998 through 2005. Physical stressors such as sediment loading, riparian destruction, and in-stream habitat homogenization affect many locations in the region. However, physical habitat measures alone were found to frequently overestimate the biological integrity of streams in the region. Many sites within the San Diego Basin, although unaffected by physical stressors, continue to exhibit low biological integrity scores. Sites with low biological integrity tend to possess higher specific conductance and salinity compared to sites with high biological integrity. We suggest that one possible reason for these differences is the source water used for municipal purposes.  相似文献   
13.
This paper explores some detailed mechanistic hypotheses for the possible action of acid particles on the tracheobronchial region of the human respiratory system. Because of the buffering capacity and volume of mucus produced per day it appears doubtful that ordinary ambient exposures to acid particles could markedly change the overall pH of tracheobronchial mucus considered as a whole. However it is possible that individual acidic particles could contain enough acid to deliver localized “irritant signals” that could be the triggers for enhanced mucus secretion and cell division in sensitive portions of the bronchial tree, and thereby contribute to the processes involved in chronic bronchitis.

Depending on the exact pH depression required for a “signal” to be perceived by the tracheobronchial epithelium, the acid content of the incoming particles per unit weight, and the effect of neutralization by ammonia in the upper respiratory tract, the minimum size of an acidic particle required to deliver a perceptible signal might range from about 0.4 to 0.7 microns for portions of the epithelium that are frequently swept by 4-micron mucus droplets. (For unprotected epithelium, however, it is conceivable that the minimum effective size for acid particles could be less.) Since particle number per unit weight declines dramatically with increasing particle size, the most potent fraction of particles in terms of signals delivered per μg/m3is likely to be just above the minimum size that is needed to produce an effective signal. The model developed here makes predictions of the relative potency of particles of different size and acid delivery capacity that could be tested in both experimental animal systems and human epidemiological studies.  相似文献   
14.
15.
The Disaster Deficit Index (DDI) measures macroeconomic and financial risk in a country according to possible catastrophic scenario events. Extreme disasters can generate financial deficit due to sudden and elevated need of resources to restore affected inventories. The DDI captures the relationship between the economic loss that a country could experience when a catastrophic event occurs and the availability of funds to address the situation. The proposed model utilises the procedures of the insurance industry in establishing probable losses, based on critical impacts during a given period of exposure; for economic resilience, the model allows one to calculate the country's financial ability to cope with a critical impact. There are limitations and costs associated with access to resources that one must consider as feasible values according to the country's macroeconomic and financial conditions. This paper presents the DDI model and the results of its application to 19 countries of the Americas and aims to guide governmental decision‐making in disaster risk reduction.  相似文献   
16.
Life cycle inventory (LCI) is becoming more widely used as a tool to evaluate the resource and energy use and the environmental releases associated with various products. The methodology for handling different recycling scenarios is also becoming increasingly important. Several different methods exist for handling recycling in an LCI. The method described in this paper uses mathematical models to show that the same basic equations can be used to handle a variety of recycling options for multi-product systems.  相似文献   
17.
Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.  相似文献   
18.
ABSTRACT: A cascade model for forecasting municipal water use one week or one month ahead, conditioned on rainfall estimates, is presented and evaluated. The model comprises four components: long term trend, seasonal cycle, autocorrelation and correlation with rainfall. The increased forecast accuracy obtained by the addition of each component is evaluated. The City of Deerfield Beach, Florida, is used as the application example with the calibration period from 1976–1980 and the forecast period the drought year of 1981. Forecast accuracy is measured by the average absolute relative error (AARE, the average absolute value of the difference between actual and forecasted use, divided by the actual use). A benchmark forecast is calculated by assuming that water use for a given week or month in 1981 is the same as the average for the corresponding period from 1976 to 1980. This method produces an AARE of 14.6 percent for one step ahead forecasts of monthly data and 15.8 percent for weekly data. A cascade model using trend, seasonality and autocorrelation produces forecasts with AARE of about 12 percent for both monthly and weekly data while adding a linear relationship of water use and rainfall reduces the AARE to 8 percent in both cases if it is assumed that rainfall is known during the forecast period. Simple rainfall predictions do not increase the forecast accuracy for water use so the major utility of relating water use and rainfall lies in forecasting various possible water use sequences conditioned on sequences of historical rainfall data.  相似文献   
19.
Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instrumentation and gas sensors were placed over two lagoons in North Carolina during 1997-1999 to obtain information for determining ammonia emissions over extended periods and without interfering with the surrounding climate. Ammonia emissions varied diurnally and seasonally and were related to lagoon ammonium concentration, acidity, temperature, and wind turbulence. Conversion of significant quantities of ammonium NH(4)(+) to dinitrogen gas (N(2)) were measured in all lagoons with the emission rate largely dependent on NH(4)(+) concentration. Lagoon NH(4)(+) conversion to N(2) accounted for the largest loss component of the N entering the farm (43% as N(2)); however, small amounts of N(2)O were emitted from the lagoon (0.1%) and from field applications (0.05%) when effluent was applied nearby. In disagreement with previous and current estimates of NH(3) emissions from confined animal feeding operation (CAFO) systems, and invalidating current assumptions that most or all emissions are in the form of NH(3), we found much smaller NH(3) emissions from animal housing (7%), lagoons (8%), and fields (2%) using independent measurements of N transformation and transport. Nitrogen input and output in the production system were evaluated, and 95% of input N was accounted for as output N from the system.  相似文献   
20.
CO2 can be effectively immobilized during CO2 injection into saline aquifers by residual trapping – also known as capillary trapping – a process resulting from capillary snap-off of isolated CO2 bubbles. Simulations of CO2 injection were performed to investigate the interplay of viscous and gravity forces and capillary trapping of CO2. Results of those simulations show that gas injection processes in which gravitational forces are weak compared to viscous forces (low gravity number Ngv) trap significantly more CO2 than do flows with strong gravitational forces relative to the viscous forces (high Ngv). The results also indicate that over a wide range of gravity numbers (Ngv), significant fractions of the trapping of CO2 can occur relatively quickly. The amount of CO2 that is trapped after injection ceases is demonstrated to correlate with Ngv. For some simulated displacements, effects of capillary pressure and aquifer dip angle on the amount and the rate of trapping are reported. Trapping increases when effects of capillary pressure and aquifer inclination are included in the model. Finally we show that injection schemes such as alternating injection of brine and CO2 or brine injection after CO2 injection can also enhance the trapping behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号